1,495 research outputs found

    Indirect sliding mode control of power converters via double integral sliding surface

    Get PDF
    Author name used in this publication: Chi K. Tse2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    An evaluation of the practicality of sliding mode controllers in DC-DC converters and their general design issues

    Get PDF
    Author name used in this publication: Chi K. TseRefereed conference paper2005-2006 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    General design issues of sliding-mode controllers in DC-DC converters

    Get PDF
    Author name used in this publication: Chi K. Tse2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    An analog implementation of pulse-width-modulation based sliding mode controller for dc-dc boost converters

    Get PDF
    Author name used in this publication: Chi K. TseRefereed conference paper2006-2007 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    A family of PWM based sliding mode voltage controllers for basic DC-DC converters

    Get PDF
    Author name used in this publication: Chi K. TseRefereed conference paper2005-2006 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    A unified approach to the design of PWM-based sliding-mode voltage controllers for basic DC-DC converters in continuous conduction mode

    Get PDF
    Author name used in this publication: Chi K. Tse2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Hopf bifurcation and chaos in a free-running current-controlled Ćuk switching regulator

    Get PDF
    Author name used in this publication: C. K. TseAuthor name used in this publication: H. H. C. IuVersion of RecordPublishe

    Implementation of pulse-width-modulation based sliding mode controller for boost converters

    Get PDF
    Author name used in this publication: Chi K. Tse2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    On the color stability of phosphor-converted white LEDs under DC, PWM, and bilevel drive

    Get PDF
    Most commercial white LEDs are made from nitride-based blue LEDs coated with yttrium aluminium garnet phosphor, which produce spectra that shift in opposite directions under the influences of drive current and junction temperature changes. This property gives rise to different emitted spectra, hence chromaticity properties, when the LED is driven/dimmed by different current waveforms. By using a commercial white LED sample, LUXEON K2, the effects of drive current and junction temperature on the changes of chromaticity coordinates are studied experimentally. The impact of dc, pulse width modulation (PWM), and bilevel current waveform is discussed through a graphical analysis, followed by experimental verification. It is proven that dc offers the best color stability over dimming due to the counteracting influences of drive current and junction temperature variations, whereas an LED constantly suffers from noneliminable chromaticity changes when driven by the PWM. Theoretical explanations are given to justify these cases, and it is found that, for the case of dc drive, an ideal heat sinks thermal resistance can be selected based on a simple equation to minimize the overall chromaticity change over dimming. This paper provides an in-depth discussion on the relations between the chromaticity properties of phosphor-converted (pc) white LEDs and the driving/dimming methods used. © 2011 IEEE.published_or_final_versio

    Stationary and adaptive color-shift reduction methods based on the bilevel driving technique for phosphor-converted white LEDs

    Get PDF
    The bilevel driving technique has realized a 2-D control of the luminosity and emitted color of white LEDs with duty cycle and forward current levels. Unfortunately, various combinations of these dimming control parameters can lead to significant changes in junction temperature, which further modify the luminosity and emitted color of LEDs. In this paper, the theoretical aspects of these complex interactions and the impact of bilevel drive on the color-shift properties of white LEDs are discussed in detail by using a mathematical color-shift model. Two color-shift reduction methods are proposed based on the insights obtained from this model. This study shows that a heat sinks thermal resistance that minimizes the overall color shift over dimming can be uniquely determined from the knowledge of some measurable LED parameters, and gives rise to a global minimum color shift. If such a thermal resistance cannot be realized due to practical limitations, the second method that utilizes an adaptive change of forward current levels over dimming can be adopted. Based on their nature, these methods are classified as stationary and adaptive methods, respectively. Their validity is supported by experimental measurements on a commercial white LED. © 2011 IEEE.published_or_final_versio
    corecore